发布网友 发布时间:2024-10-23 23:36
共2个回答
热心网友 时间:2024-11-06 01:40
(ln(a+x))'=1/(a+x)=(1/a)1/(1+x/a)=(1/a)∑(0,∞)(-x/a)^n |x|<a
所以:ln(a+x) =∑(0,∞)(-1)^n*(x/a)^(n+1)/(n+1)+C
当x=0时,求得C=lna
当x=a时,为收敛的交错级数
当x=-a时,发散
所以:ln(a+x) =∑(0,∞)(-1)^n*(x/a)^(n+1)/(n+1)+lna (-a,a]
热心网友 时间:2024-11-06 01:43
ln(a+x) =ln{a[1+(x/a)]}=lna+ln[1+(x/a)]=lna+Σ[1,∞][(-)^(n-1)]{(x/a)^n]/n},成立区间:-a<x<a