发布网友 发布时间:2024-10-24 14:09
共1个回答
热心网友 时间:23分钟前
(1)设A1表示事件“第一次操作从箱中取出的是红球”,
B1表示事件“第一次操作从箱中取出的是白球”,
A2表示事件“第二次操作从箱中取出的是红球”,
B2表示事件“第二次操作从箱中取出的是白球”.
则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.
由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.
B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.
由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.
A1B2+B1A2表示“进行第二次操作后,箱中红球个数为 4”,又A1B2与B1A2是互斥事件.
∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.
(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.
P(X=3)=35×35=925,P(X=4)=1425,
P(X=5)=25×15=225.
进行第二次操作后,箱中红球个数X的分布列为:
进行第二次操作后,箱中红球个数X的数学期望
EX=3×925+4×1425+5×225=9325.