首页 旅游资讯 线路攻略 景点大全 国内游 境外游 美食特产

已知a,b,c,d都是正数,求证(ab+cd)(ac+bd)≥4abcd.用柯西不等式...

发布网友 发布时间:2024-10-26 10:24

我来回答

1个回答

热心网友 时间:2024-10-26 10:34

用柯西不等式这么做:
由柯西不等式:(cd+ab)(ab+cd)>=(√abcd+√abcd)^2=4abcd
即(ab+cd)^2>=4abcd,所以ab+cd>=2√abcd
同理:(bd+ac)(ac+bd)>=(√abcd+√abcd)^2=4abcd
所以ac+bd>=2√abcd
所以(ab+cd)(ac+bd)>=(2√abcd)*(2√abcd)=4abcd
证毕.
其实不管用什么不等式都是等价的,我们只不过绕了个弯得到了楼上均值的结果...

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com